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Data Science Models Meet Fundamental Models:
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Call-for-Papers for the 11" International Ruhr Energy Conference (INREC)

Uncertainties in Energy Markets

September 27-28, 2022, Essen, Germany

Conference objectives

Energy and electricity markets are characterised by a variety of long- and short-term risks and
substantial uncertainties. Points in case are the Russian aggression against Ukraine, the accelerating
switch to clean energy in Europe, as well as the transition and physical risks of climate change.
Thorough investigations of various sources of uncertainty and risk in energy and financial markets
are a key priority for researchers and practitioners. We welcome contributions from all areas of
energy-related research in economics, finance, engineering, social sciences, data science and
mathematics.

» Abstract submission deadline: July 04, 2022
> See www.inrec.org
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German day-ahead electricity market
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Motivation

» Past decades enormous progress for
fundamental and data driven electricity price models

Reasons:
» Better availability and quality of data
» Better models and (optimization) algorithms

Objective of the talk:

» How can data science models improve further using fundamental
models? (not combination/postprocessing or curve modeling)
Literature:

» Ziel, F., & Steinert, R. (2018). Probabilistic mid-and long-term electricity price forecasting.
Renewable and Sustainable Energy Reviews, 94, 251-266.

» Weron, R., & Ziel, F. (2019). Electricity price forecasting. In Routledge handbook of
energy economics (pp. 506-521). Routledge.

» Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B.,
... & Ziel, F. (2022). Forecasting: theory and practice. International Journal of
Forecasting.
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Two model classes for electr|C|ty prlce forecastmg

i) Historic data based models

e Electricity price is modeled -

dependent on its history
(and related inputs) Bao-
o Statistical/ML/Al  methods, &=

e.g. linear models, (deep) °
neural networks, GBMs, . ..

e Popular in short-term fore-
casting = operations man-
agemant
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Two model classes for electr|C|ty price forecasting

i) Historic data based models

e Electricity price is modeled
dependent on its history
(and related inputs)

e Statistical/ML/Al  methods,
e.g. linear models, (deep)
neural networks, GBMs, . ..

e Popular in short-term fore-
casting = operations man-
agemant

i) Fundamental models
e Economically motivated
e Electricity price is match of

supply and demand
e Popular in long-term fore-
casting

= policy making and invest-
ment decisions
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Data science models: Naive '

The naive model is a very simple day-ahead forecasting model for
hourly electricity price Yy 3,

{Ydl,h if d is on Tue, Wed, Thu, Fri
Yon =

+e 1
Yy_75, if dis on Mon, Sat, Sun dh (1)

» Very low model complexity
» No estimation risk
» = Very low accuracy

» Recommended as (trivial) benchmark

Florian Ziel, House of Energy Markets and Finance, University of Duisburg-Essen



Data science models: Linear model '

A linear model (LM) (often referred as expert model) for Y7 j:
Yin = Bo + f1Sat + S2Sun + SsMon + S4Holiday

deterministic inputs (esp. calendar information)

+ B5Yq_1,n + BeYa—2,n + BrYa—7n + BsYa—1,1 + BoYq—1 max

autoregressive (= past price) information

+ 510DA—Loadd7h + P11 DA—Winddﬁh + ,312DA-SO|ard7h

day-ahead foreca;?s of fundamentals

+ Bi3EUA; + p14Coalg + 515NGas,; + B160ilg +e4p, (2)

current related market information (fuels+emission prices)

» Low model complexity
» Low estimation risk
» = Low to moderate accuracy
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Data science models: Neural network model

A simple artificial neural network (ANN) (often MLP or recurrent) for Yy 5,
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» Moderate model complexity
» Moderate estimation risk
» = Good accuracy
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Data science models: Neural network model

A simple artificial neural network (ANN) (often MLP or recurrent) for Yy 5,
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» Moderate model complexity
» Moderate estimation risk
» = Good accuracy
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Data science models: Neural network model

A simple artificial neural network (ANN) for Yy 1, ..., Yy 24:
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» Moderate model complexity
» Moderate estimation risk
» = Good accuracy
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Data science models: Neural network model
A high-dim. artificial neural network (ANN) for Yy 1,..., Y4 24:
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» High model complexity
» High estimation risk
» = Poor accuracy
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Data science models: Overview on complexity '

Decomposition of model complexity into input size and model depth
8 —

B high—dim. ANN 6

[l simple ANN

@ high-dim. LM
@ simple LM

model depth
RMSE

o N -
L | |
[
[ ]
[ ]
I
I

Naive
simple LM

high—dim. LM

0

simple ANN
high-dim. ANN

input variables

» complexity and prediction error for naive, linear model (LM)
and artificial neural networks (ANN)
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Explained information and overfitting

simple LM high—dim. LM

overfitting error
(variance)

error measure

\/]

not explained information
(bias?)

/

input information

» simple LM has moderate prediction error (poor variance-bias trade-off)
» high-dim. LM has low prediction error (good variance-bias trade-off)
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Explained information and overfitting

simper LM

le hightdim. LM
: simple ANN ' high-djrm. ANN
‘ Prichy

overfitting error
(variance)

error measure

not explained information
(bias?)

input information

» simple ANN has high pred. error (good variance-bias trade-off)
» high-dim. ANN has high pred. error (poor variance-bias trade-off)
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Can we do better? '

W high-dim. ANN

Il simple ANN

model depth

@ high-dim. LM
@ simple LM

input variables

a) model like high-dim. LM with higher model depth?

= increase model depth by adding only relevant non-linearities
b) model like simple ANN with more inputs?

= increase input size while controlling for model depth

= Utilize fundamental electricity price models to learn restrictions for
model design in a) and b)
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How to use fundemental models?

Marginal costs/electricity price in EUR/MW

For illustration purpose consider simple supply-stack model:

@ Biomass® Nuclear
B Hydro @ Lignite
604 ® Wind ® Coal
Solar [ Gas Demand
B CHP = QOil
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How to use fundemental models?

For illustration purpose consider simple supply-stack model:

0 Biomass®E Nuclear 1Zi CO2e costy

B Hydro @ Lignite N Fuel costs
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Change supply stack model to residual load/demand perspective:
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The supply stack model.

Marginal costs/electricity price in EUR/MW

[ Biomass® Nuclear CO2e cost:
W Hydro @ Lignite N Fuel costs
60 4 @ Wind W Coal —
Solar [ Gas Residual Demangl m
m CHP @ Oil i
A
404 Electricity price 7—7772 = r
S g ﬁ Z
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» Consider merit order curve/ supply stack
» Formal electricity price model

Yd,h = Modﬁ(DA-ReSLOadd,h) +€an
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Supply stack model with 1 fuel. '

» Very simple assumption: Constant supply stack with only one fuel:
MO, (z) = ag + acnEUA; + aoNGasy (3)

» Simple assumption: Linear supply stack with only one fuel:
MOy () = o+ o1 EUAG+ apaNGasy + (a1 + 11 EUAg + r1aNGasg) x
= for the electricity price Yy, we receive with x = DA-ResLoad, ;,:

Yy n =MO, ,(DA-ResLoad, ) + €4,
=ago + a1 EUA; + apaNGas,

+ (@10 + a11EUA; + a19NGas,)DA-ResLoad, s, +cqn (4)

» Interactions EUA;DA-ResLoad, ; and NGas;DA-ResLoad,
candidate regressors in linear model

Florian Ziel, House of Energy Markets and Finance, University of Duisburg-Essen



Supply stack model with 2 fuels.

Marginal costs: coal_plant

| const | cons|
150 BEUA| 1509 B EUA
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» Case 1, non-overlapping price regions (C is capacity of first fuel):
Yan = ago + o1 EUA; + apeNGasy + ¢4,

+ DA-ReslLoad ;1 {pa-ResLoad, , <} (@10 + @11EUAG + a12NGasg)

+ DA-ReslLoad; ;1 {pa-ResLoad, ,>C} (@22 + a21EUAG + ansEUAG)
» Terms e.g. DA-ResLoad, n1{pa-ResLoad, ,>cyNGasq
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Supply stack model with 2 fuels.
» Resulting termse.g. (selected)

DA-ResLoady,, (ao1 + @111 {pA-ResLoady ,<C} + @211 {DA-ResLoads ,>c}) EUAG

=f(DA-ResLoady, ;) (non-linear function )

= GAMSs (generalized additive models) suitable framework
» Case 2, overlapping price regions:

B const B const
o EUA o EUA

o coal O ngas | 2
S
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» Same conclusion (f is only more complicated)

Florian Ziel, House of Energy Markets and Finance, University of Duisburg-Essen 22/26




Example ANN structure for fundamental information.
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» Feed information in the network as in fundamental model
= only allow for reasonable non-linear relationships
» black boxes receive (some) interpretation
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Example ANN structure for fundamental information. '
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» Allow for reasonable black boxes
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On Coupled electricity markets. '

» Consider two market areas (bidding zones) A and B

» prices with no interconnection:
Pf, = MO% ,(ResLoad),) + 4, and
PB, = MOR , (ResLoad} ) + ca
» price with unlimited interconnection:
PAUB —
d,h .

((MOQ\,h)*l + (Mogh)*l) (ResLoad, + ResLoad® ) + ca

=MO}7?
= Even for simple linear supply stack assumption with one fuel
MOS8 is quite highly nonlinear, involving shape of the supply
stack and fuel/emission prices - but no residual load.

» For limited interconnection situation is even more complicated, but
of the same structure.

Florian Ziel, House of Energy Markets and Finance, University of Duisburg-Essen



Conclusions

» Data science models have challenges concerning their
complexity: input size vs model depth

» Fundamental models help to find relevant features and
non-linearities

» Fundamental models help to get (more) interpretable price models

Florian Ziel, House of Energy Markets and Finance, University of Duisburg-Essen



Conclusions

» Data science models have challenges concerning their
complexity: input size vs model depth

» Fundamental models help to find relevant features and
non-linearities

» Fundamental models help to get (more) interpretable price models

Thank you for your attention.

Further Literature:

» hZiel, F, & Weron, R. (2018). Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs.
multivariate modeling frameworks. Energy Economics, 70, 396-420.

» Alasseur, C., & Féron, O. (2018). Structural price model for coupled electricity markets. Energy Economics, 75,
104-119.

» Jahns, C., Podewski, C., & Weber, C. (2020). Supply curves for hydro reservoirs-Estimation and usage in large-scale
electricity market models. Energy Economics, 87, 104696.

» Carmona, R., Coulon, M., & Schwarz, D. (2013). Electricity price modeling and asset valuation: a multi-fuel structural
approach. Mathematics and Financial Economics, 7(2), 167-202.

» Beran, P, Vogler, A., & Weber, C. (2021). Multi-day-ahead Electricity Price Forecasting: A Comparison of fundamental,
econometric and hybrid Models.
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